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ABSTRACT 
 

This paper proposes and demonstrates an estimation scheme for Li-ion concentrations in both electrodes 

of a Li-ion battery cell. The well-known observability deficiencies in the two-electrode electrochemical 

models of Li-ion battery cells are first overcome by extending them with a thermal evolution model. 

Essentially, coupling of electrochemical-thermal dynamics emerging from the fact that the Lithium 

concentrations contribute to the entropic heat generation is utilized to overcome the observability issue. 

Then, an estimation scheme comprised of a cascade of a sliding mode observer and an Unscented Kalman 

filter (UKF) is constructed that exploits the resulting structure of the coupled model. The approach gives 

new real-time estimation capabilities for two often-sought pieces of information about a battery cell: 1) 

estimation of cell-capacity, and 2) tracking the capacity loss due to degradation mechanisms such as 

Lithium plating. These capabilities are possible since the two-electrode model need not be reduced further 

to a single electrode model by adding Li conservation assumptions, which do not hold with long-term 

operation. Simulation studies are included for the validation of the proposed scheme. Effect of 
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measurement noise and parametric uncertainties are also included in the simulation results to evaluate 

the performance of the proposed scheme. 

 

INTRODUCTION 
 

Different kinds of modeling strategies have been discussed in the literature for 

Li-ion batteries: 1) Data-driven models [1],[2], 2) Equivalent Circuit Models [3],[4], and 3) 

Electrochemical models. These models are generally used for estimating State-of-Charge 

(SOC) and State of Health (SOH) of the batteries, which are crucial for real-time 

monitoring and control. Among these models, the electrochemical models arguably 

possess the most accurate and physically meaningful information [5]. The pseudo two-

dimensional (P2D) model, which involves nonlinear partial differential equations (PDEs), 

is one of the benchmark models for Li-ion battery cells [6]. However, the P2D model 

suffers from two disadvantages: 1) too complex mathematical structure for estimator 

design, and, 2) high computational burden for real-time implementation. As a work 

around, several researchers have proposed reduced-models with less computational 

and structural complexity [7], [8]. The Single Particle Model (SPM) is one of such widely 

used reduced-models for real-time applications [9], [10]. 

In the SPM the electrodes are approximated as spherical particles, assuming 

volume-averaged current rather than distributed current in both electrodes, and also 

neglecting the charge and electrolyte dynamics. Several SOC estimation approaches 

based on SPMs have been proposed such as back-stepping PDE estimator [11], extended 

Kalman filter (EKF) [9], [10], nonlinear observer-based approaches presented by the 
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authors of the present paper [12],[13]. Another set of work resorted to adaptive 

estimation to simultaneously estimate the states and parameters of the model using: 

Particle Filter (PF) [14], unscented Kalman Filter (UKF) [15], Iterative EKF (IEKF) [16], 

adaptive PDE observer [17] and nonlinear geometric observer [18].  The authors of the 

present paper also contributed to this segment by proposing sliding mode observer [19] 

and nonlinear adaptive observer [20], [35]. 

From estimation theory viewpoint, the two-electrode SPM suffers a drawback 

where the Li-ion concentration states are weakly observable from the differential 

voltage measurement [10]. One of the main reasons for that is the Li-ion concentration 

states of the electrodes are coupled in the voltage output through their thermodynamic 

potentials, whereas their dynamics are decoupled. To resolve this observability issue the 

existing estimation schemes approximate one electrode’s concentration state as a 

function of the concentration state of other electrode [10],[11],[12]. This approximation 

results in a one-electrode SPM (either anode or cathode) with strong observability of 

the corresponding states from the voltage measurement. However, this afore-

mentioned algebraic function, and hence the approximation, comes from the underlying 

assumption of the conservation of the total number of Li-ions in the cell. This 

assumption may not be true as there are losses of Li-ions due to aging and other 

phenomena over persistent long-term operation. 

In light of the above discussion, the main contribution of this work is: we relaxed 

the aforementioned assumption (conservation of the total number of Li-ions in the cell) 

and designed an estimation scheme based on the two-electrode SPM. Essentially, the 
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main difference between previously proposed battery state estimation schemes [9-20, 

35] and the current work is that previous schemes estimate the overall cell SOC based 

on the Li-ion conservation assumption, whereas the current work relaxes such 

assumption and estimates the SOC (Li-ion concentration) of individual electrodes. 

Estimates of individual electrode SOC would enable additional crucial benefits/features 

such as health monitoring of individual electrodes, capacity tracking of the cell and 

detection of mechanisms leading to loss of active Lithium, e.g. Li plating. 

In doing so, we first showed that the observability of both electrode 

concentration states can be improved by exploiting the electrochemical-thermal 

coupling. This arises from the fact that the electrochemical parameters of the cell and 

the thermodynamic potential of the electrodes depend on the temperature. On the 

other hand, electrode surface concentrations contribute to the heat generation in the 

thermal model. In the estimation scheme, we used a cascaded two-observer structure 

that exploits this coupling. Observer I is a sliding mode observer which is used to 

estimate the heat generation term contributed by the electrode concentration states. 

Then, this estimate of the heat-generation term is fed to Observer II as a pseudo-

measurement. Observer II, which is based on the two-electrode SPM, uses this pseudo-

measurement and the differential voltage measurement to estimate the electrode 

concentration states. The design of Observer II is based on an Unscented Kalman filter 

(UKF) framework that can account for the model nonlinearities and uncertainties.  

A preliminary version of this work was presented in [34]. In the present paper, 

we extend our preliminary work [34] by including: 1) Discussion and results of the 
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application of the scheme to estimate initial capacity of the cell as well as the capacity 

degradation over time; 2) Detection scheme for degradation mechanisms such as 

lithium plating in cells; 3) Additional simulation results under varying operating 

conditions such as dynamic discharge profiles; and, 4) Discussions and simulation 

studies on the effect of the modeling uncertainties and measurement noises on the 

scheme. It is shown that the proposed estimation scheme is able to estimate Li-ion 

concentration states in both electrodes from measured cell voltage, temperature and 

current. Further, it is shown how the estimation of individual electrode concentrations 

can be used to compute the real-time capacity of the cell and to help in detecting 

combinations of degradation mechanisms leading to loss of Lithium in the cell. 

The organization of the paper is as follows: First, we review the SPM and thermal 

model for Li-ion cell. Next, a detailed discussion of the system observability is provided. 

Then the estimation scheme and its design are presented. This is followed by the 

application of the proposed scheme for two specific objectives: capacity tracking and 

Lithium plating detection. Then, simulation results are provided for the performance of 

the scheme along with the effects of modeling, parametric and measurement 

uncertainties. Lastly, the paper is concluded with some remarks. 
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MODELING OF LITHIUM-ION CELL  
 

The SPM is derived from the P2D model [6] by assuming volume-averaged 

current and neglecting electrolyte and charge dynamics.  We shall use the schematic 

given in Fig. 1 and notations given in the nomenclature section for the SPM equations. 

The two diffusion PDEs of the SPM describing the Li-ion diffusion dynamics are 

[9], [10]: 

𝜕𝑐𝑠
±

𝜕𝑡
=

𝐷𝑠
±(𝑇)

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑐𝑠
±

𝜕𝑟
) 

𝜕𝑐𝑠
±

𝜕𝑟
|
𝑟=0

= 0,
𝜕𝑐𝑠

±

𝜕𝑟
|
𝑟=𝑅±

=
±𝐼

𝑎𝑠
±𝐹𝐷𝑠

±(𝑇)𝐴𝐿±
 

 

 

(1) 

where 𝑐𝑠
± is the Li-ion concentration of the electrodes, 𝐼 is charge/discharge current and 

𝑎𝑠
± = 3𝜀±/𝑅± with 𝜀± are the solid phase volume fractions of each electrode. The 

output voltage can be written as: 

𝑉 =
𝑅̅𝑇

𝛼+𝐹
𝑠𝑖𝑛ℎ−1 (

𝐼

2𝑎𝑠
+𝐴𝐿+𝑖0

+) 

−
𝑅̅𝑇

𝛼−𝐹
𝑠𝑖𝑛ℎ−1 (

𝐼

2𝑎𝑠
−𝐴𝐿−𝑖0

−) + 𝑈+(𝑐𝑠,𝑒
+ , 𝑇) − 𝑈−(𝑐𝑠,𝑒

− , 𝑇) − 𝑅𝑓(𝑇)𝐼 
(2) 

where i0
± are the exchange current densities given by: 

𝑖0
± = 𝑘0

±(𝑇) √𝑐𝑒𝑐𝑠,𝑒
± (𝑐𝑠,𝑚𝑎𝑥

± − 𝑐𝑠,𝑒
± ) (3)  

Further, to capture the temperature dynamics, the following thermal model [21] 

is considered: 
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𝑚𝐶𝑝

𝑑𝑇

𝑑𝑡
= 𝐼 (𝑈+(𝑐𝑠,𝑒

+ , 𝑇) − 𝑈−(𝑐𝑠,𝑒
− , 𝑇) − 𝑉 − 𝑇 (

𝜕𝑈+

𝜕𝑇
−

𝜕𝑈−

𝜕𝑇
)) − ℎ𝐴𝑠(𝑇

− 𝑇∞) (4) 

where 𝑇 is the temperature and 
𝜕𝑈±

𝜕𝑇
 are functions of the surface concentrations  𝑐𝑠,𝑒

± . 

Further, the solid phase diffusion coefficients (𝐷𝑠
±), the contact film resistance (𝑅𝑓) and 

the reaction rate constants (𝑘0
±) are functions of temperature based on the Arrhenius 

relationship [21]: 

𝑘0
±(𝑇) = 𝑘0,𝑟𝑒𝑓

± 𝑒𝑥𝑝(
𝐸𝐾

±

𝑅̅
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
)) 

𝐷𝑠
±(𝑇) = 𝐷𝑠,𝑟𝑒𝑓

± 𝑒𝑥𝑝(
𝐸𝐷𝑠

±

𝑅̅
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
)) 

𝑅𝑓(𝑇) = 𝑅𝑓,𝑟𝑒𝑓𝑒𝑥𝑝(
𝐸𝑅

𝑅̅
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
)) 

 

 

(5) 

where 𝑇𝑟𝑒𝑓 is the reference temperature at which 𝑘0,𝑟𝑒𝑓
± , 𝐷𝑠,𝑟𝑒𝑓

±  and 𝑅𝑓,𝑟𝑒𝑓 are 

evaluated. 

Note: As noted in the existing literature, the predictive ability of the SPM degrades high 

charge-discharge rates, especially when the electrolyte dynamics have significant 

contributions. The extensions of the SPM with electrolyte dynamics and thermal models 

are also proposed in [22] and [23] which improve the predictive ability. However, the 

objective of this paper is to illustrate the observability and estimation concept using the 

conventional two-electrode SPM along with the averaged thermal model. Extension of 

our design based on such extended SPM models can be considered in future work. 
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Furthermore, the model inaccuracy of the SPM is compensated to a certain extent by 

the use of Unscented Kalman Filter (UKF) algorithm, which will be detailed later. 

Next, we approximate the PDEs in (1) to a set of ODEs (6)-(7), using a finite 

difference method where the spatial domain is discretized into (M+1) nodes (see Fig. 1).  

Negative electrode: 

𝑐̇𝑠𝑁0 = −3𝑎𝑁𝑐𝑠𝑁0 + 3𝑎𝑁𝑐𝑠𝑁1 

𝑐̇𝑠𝑁𝑚 = (1 −
1

𝑚
)𝑎𝑁𝑐𝑠𝑁(𝑚−1) − 2𝑎𝑁𝑐𝑠𝑁𝑚 + (1 +

1

𝑚
)𝑎𝑁𝑐𝑠𝑁(𝑚+1) 

𝑐̇𝑠𝑁𝑀 = (1 −
1

𝑀
)𝑎𝑁𝑐𝑠𝑁(𝑀−1) − (1 −

1

𝑀
)𝑎𝑁𝑐𝑠𝑁𝑀 − (1 +

1

𝑀
)𝑏𝑁𝐼 

 

 

(6) 

Positive electrode: 

𝑐̇𝑠𝑃0 = −3𝑎𝑃𝑐𝑠𝑃0 + 3𝑎𝑁𝑐𝑠𝑃1 

𝑐̇𝑠𝑃𝑚 = (1 −
1

𝑚
)𝑎𝑃𝑐𝑠𝑃(𝑚−1) − 2𝑎𝑃𝑐𝑠𝑃𝑚 + (1 +

1

𝑚
)𝑎𝑃𝑐𝑠𝑃(𝑚+1) 

𝑐̇𝑠𝑃𝑀 = (1 −
1

𝑀
)𝑎𝑃𝑐𝑠𝑃(𝑀−1) − (1 −

1

𝑀
)𝑎𝑃𝑐𝑠𝑃𝑀 − (1 +

1

𝑀
)𝑏𝑃𝐼 

 

 

(7) 

where 𝑚 = 1,… , (𝑀 − 1),  [𝑐𝑠𝑃0, 𝑐𝑠𝑃1, … 𝑐𝑠𝑃𝑀] and [𝑐𝑠𝑁0, 𝑐𝑠𝑁1, … 𝑐𝑠𝑁𝑀] are Li-ion 

concentration states, 𝛥𝑁 = 𝑅−/𝑀, 𝛥𝑃 = 𝑅+/𝑀, 𝑎𝑁 = 𝐷𝑠
−(𝑇)/∆𝑁

2 , 𝑎𝑃 = 𝐷𝑠
+(𝑇)/∆𝑃

2 , 

𝑏𝑁 = 1/𝑎𝑠
−𝐹𝛥𝑁𝐴𝐿−, 𝑏𝑃 = 1/𝑎𝑠

+𝐹𝛥𝑃𝐴𝐿+.  

Substituting 𝑐𝑠,𝑒
− = 𝑐𝑠𝑁𝑀 and 𝑐𝑠,𝑒

+ = 𝑐𝑠𝑃𝑀 in (2), the voltage expression becomes: 

𝑉 =
𝑅̅𝑇

𝛼+𝐹
𝑠𝑖𝑛ℎ−1 (

𝐼

2𝑎𝑠
+𝐴𝐿+𝑖0

+) 

−
𝑅̅𝑇

𝛼−𝐹
𝑠𝑖𝑛ℎ−1 (

𝐼

2𝑎𝑠
−𝐴𝐿−𝑖0

−) 

+𝑈+(𝑐𝑠𝑃𝑀, 𝑇) − 𝑈−(𝑐𝑠𝑁𝑀, 𝑇) − 𝑅𝑓(𝑇)𝐼 (8) 



Journal of Dynamic Systems, Measurement, and Control 

 

9 

Dey, # DS-15-1432 

 

where 𝑖0
± are the exchange current densities given by: 

𝑖0
+ = 𝑘0

+(𝑇) √𝑐𝑒𝑐𝑠𝑃𝑀(𝑐𝑠,𝑚𝑎𝑥
− − 𝑐𝑠𝑃𝑀) 

𝑖0
− = 𝑘0

−(𝑇) √𝑐𝑒𝑐𝑠𝑁𝑀(𝑐𝑠,𝑚𝑎𝑥
− − 𝑐𝑠𝑁𝑀) (9) 

Note: In this work, a finite difference method is adopted to reduce the PDE model to 

ODE model. However, several other methods exist that can be used for this model 

reduction in the proposed scheme [36].  

 
OBSERVABILITY ANALYSIS 
 
Observability of Li-ion Concentrations in both Electrodes from only Voltage Output 

(Conventional SPM): 

Following from above, the electrode concentration dynamics and the voltage 

output can be written in the following state-space form: 

[
𝑥̇𝑃

𝑥̇𝑁
] = [

𝐴𝑃 0𝑀

0𝑀 𝐴𝑁
] [

𝑥𝑃

𝑥𝑁
] + [

𝐵𝑃

𝐵𝑁
] 𝑢 

𝑦𝑉 = 𝑈𝑃(𝑥𝑃𝑀, 𝑇) − 𝑈𝑁(𝑥𝑁𝑀, 𝑇) + 𝑛𝑃(𝑥𝑃𝑀, 𝑇) − 𝑛𝑁(𝑥𝑁𝑀, 𝑇) − 𝑅𝑓(𝑇)𝑢 (10) 

where 𝑥𝑃 = [𝑐𝑠𝑃1, … 𝑐𝑠𝑃𝑀]𝑇 ∈ 𝑅𝑀 and 𝑥𝑁 = [𝑐𝑠𝑁1, … 𝑐𝑠𝑁𝑀]𝑇 ∈ 𝑅𝑀, 𝑢 ∈ 𝑅 is input 

current, 𝑦𝑉 = 𝑉 ∈ 𝑅 is the output voltage, 𝑥𝑃𝑀 = 𝑐𝑠𝑃𝑀 ∈ 𝑅 and 𝑥𝑁𝑀 = 𝑐𝑠𝑁𝑀 ∈ 𝑅   are 

the surface concentration states,  𝐴𝑃 ∈ 𝑅𝑀×𝑀 and 𝐴𝑁 ∈ 𝑅𝑀×𝑀 are temperature 

dependent tri-diagonal matrices obtained from the state matrices in (6) and (7) 

respectively, 0𝑀 ∈ 𝑅𝑀×𝑀 is the zero matrix, 𝐵𝑃 ∈ 𝑅𝑀×1 and 𝐵𝑁 ∈ 𝑅𝑀×1 are the input 

matrices derived from (6) and (7) respectively, 𝑈𝑃 = 𝑈+: 𝑅2 → 𝑅  and 𝑈𝑁 = 𝑈−: 𝑅2 → 𝑅 

are the temperature dependent open-circuit potential maps for the positive and 
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negative electrode, respectively, 𝑅𝑓 ∈ 𝑅 is the temperature dependent scalar film 

resistance, 𝑛𝑃: 𝑅2 → 𝑅  and 𝑛𝑁: 𝑅2 → 𝑅  are the first two scalar over-potential terms in 

(8), respectively. 

Around a given nominal operating temperature 𝑇 = 𝑇∗, the observability of (10) 

is studied in [10] where the states are found to be weakly observable from the voltage 

output. This unobservability can also be explained by considering the system structure 

of (10). There is no coupling between individual electrode concentration states in (10) 

i.e. 𝐴𝑃 and 𝐴𝑁 have no common terms. However, in the nonlinear output voltage map 

𝑦𝑉, the electrode surface concentrations 𝑥𝑃𝑀 and 𝑥𝑁𝑀 are coupled via their 

thermodynamic potential. This leads to the afore-mentioned unobservability. Two 

solutions have been presented in literature to improve on this concern before 

undertaking estimator design: 1) In [10], the surface concentration of the negative 

electrode is approximated as a function of the positive electrode surface concentration 

using the stoichiometry ratio; 2) In [11], the opposite approximation is done under the 

assumption of the conservation of the total number of Li-ions in the cell. However, the 

conservation assumption may not be true as discussed before. In this paper, we take a 

different approach where we improve the observability by adding the thermal model to 

the two-electrode SPM (10).  

Observability of Li-ion Concentrations in both Electrodes from Voltage and 

Temperature Output (Conventional SPM with Thermal Dynamics): 

With the addition of thermal dynamics, the Lithium-ion cell model can be written 

as: 
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[
𝑥̇𝑃

𝑥̇𝑁
] = [

𝐴𝑃 0𝑀

0𝑀 𝐴𝑁
] [

𝑥𝑃

𝑥𝑁
] + [

𝐵𝑃

𝐵𝑁
] 𝑢 

𝑚𝐶𝑝𝑇̇ = 𝑢{𝑈𝑃(𝑥𝑃𝑀, 𝑇) − 𝑈𝑁(𝑥𝑁𝑀, 𝑇) − 𝑦𝑉}  

−𝑢𝑇{𝑈𝑃
𝐷(𝑥𝑃𝑀) − 𝑈𝑁

𝐷(𝑥𝑁𝑀)} − ℎ𝐴𝑠(𝑇 − 𝑇∞) 

𝑦𝑉 = 𝑈𝑃(𝑥𝑃𝑀, 𝑇) − 𝑈𝑁(𝑥𝑁𝑀, 𝑇) + 𝑛𝑃(𝑥𝑃𝑀, 𝑇) − 𝑛𝑁(𝑥𝑁𝑀, 𝑇) − 𝑅𝑓(𝑇)𝑢 

𝑦𝑇 = 𝑇 (12) 

where 𝑈𝑃
𝐷 =

𝜕𝑈+

𝜕𝑇
: 𝑅 → 𝑅  and 𝑈𝑁

𝐷 =
𝜕𝑈−

𝜕𝑇
: 𝑅 → 𝑅 are functions of 𝑥𝑃𝑀 and 𝑥𝑁𝑀, 

respectively, and 𝑦𝑇 = 𝑇 ∈ 𝑅 is the measured temperature. It can be seen from (12) 

that the thermal model possess additional information about the electrode surface 

concentrations in the form of {𝑈𝑃
𝐷(𝑥𝑃𝑀) − 𝑈𝑁

𝐷(𝑥𝑁𝑀)}. This is the crucial feature behind 

the improvement of the observability of the concentration state in both electrodes. 

Next, we verify the observability using the sufficient rank condition for the local 

nonlinear observability notion described in [24]:  

𝑂(𝑥∗, 𝑢∗) =

[
 
 
 
 

𝜕

𝜕𝑥
(𝐿𝑓

0[ℎ])

⋮
𝜕

𝜕𝑥
(𝐿𝑓

2𝑀−1[ℎ])]
 
 
 
 

𝑥=𝑥∗,𝑢=𝑢∗

 

 

where ℎ = [𝑦𝑉 𝑦𝑇]𝑇 represents the output voltage map, 𝑥 = [𝑥𝑃
𝑇 , 𝑥𝑁

𝑇] represents the 

state vector and 𝑢 represents the input current. The observability of (12) depends on 

the functions 𝑈𝑃, 𝑈𝑁, 𝑈𝑃
𝐷 and 𝑈𝑁

𝐷, which are specific to different Li-ion battery 

chemistries. Here, we consider the LiCoO2-Graphite chemistry for illustration. The 

functions 𝑈𝑃, 𝑈𝑁, 𝑈𝑃
𝐷 and 𝑈𝑁

𝐷 for this chemistry are shown in Fig. 2. The rank of the 

observability matrix 𝑂 is checked at different operating points with a 4-node 
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discretization for each electrode particle. Therefore, the dimension of the state vector is 

7 (3 concentration states for each electrode and one thermal state). It is noted that the 

observability matrix 𝑂 has rank 7 at all tested operating points (MATLAB 2013a, 32 bit), 

except for the operating points with 𝑢∗ = 0. Therefore, it can be concluded that the 

system (12) is locally observable for all of the operating points tested except for 𝑢∗ = 0. 

Remark I: In case of 𝑢∗ = 0, thermal dynamics does not carry any information of the Li-

ion concentration states. Hence, the system loses its observability. This is evident from 

the expression of the thermal dynamics in (12).  

Remark II: Considering Fig. 2, it can be noted that the values of 𝑈𝑃
𝐷 and 𝑈𝑁

𝐷 are much 

smaller than that of 𝑈𝑃 and 𝑈𝑁 and are generally in the mV range. However, 𝑈𝑃
𝐷 and 𝑈𝑁

𝐷 

enter the thermal dynamics equation (4) as 𝑢𝑇𝑈𝑃
𝐷 and 𝑢𝑇𝑈𝑁

𝐷 where 𝑇 is the 

temperature in K and 𝑢 is the current in A. Considering the nominal temperature around 

298 K and the nominal current around 10 A, 𝑈𝑃
𝐷 and 𝑈𝑁

𝐷 are amplified by the factor of 

2980 which makes them comparable to the amplitudes of 𝑈𝑃 and 𝑈𝑁. Therefore, the 

measurements of voltage, current and temperature should be sufficiently accurate in 

order to observe the states through these terms. This is one of the limitations of using 

this model for estimation. 

Remark III: Another observation that can be made from Fig. 2 is that the 𝑈𝑁
𝐷 function 

becomes flat after 𝑥𝑁𝑀/𝑥𝑁𝑀−𝑚𝑎𝑥 crosses 0.5. This indicates the insensitivity of 𝑈𝑁
𝐷 to 

the negative electrode surface concentration state in the region 0.5𝑥𝑁𝑀−𝑚𝑎𝑥 to 

𝑥𝑁𝑀−𝑚𝑎𝑥. However, this does not lead to the unobservability of the negative electrode 
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concentration as the other three functions the 𝑈𝑃
𝐷, 𝑈𝑃 and 𝑈𝑁 are still sensitive to the 

corresponding states in that region. This makes the overall system still observable. 

 
 
ESTIMATION SCHEME 
 

The estimation scheme is depicted in Fig. 3. 

As can be seen from Fig. 3, the scheme has two observers running in cascade.  

Observer I: This is designed based on the thermal model of the system. This observer 

estimates a pseudo-measurement (𝑦𝑝𝑠𝑒𝑢𝑑𝑜) signal using the current and temperature 

measurement. This 𝑦𝑝𝑠𝑒𝑢𝑑𝑜 essentially contains the electrode concentration function 

that contributes to the heat generation term.  

Observer II: This is designed based on the two-electrode SPM. This observer estimates 

Li-ion concentration states in both electrodes using the voltage and the pseudo-

measurement (𝑦𝑝𝑠𝑒𝑢𝑑𝑜) signal.  

 

Details of Observer I 

The design of Observer I is done based on sliding-mode observer theory [25]. The 

observer structure is given below: 

𝑚𝐶𝑝𝑇̇̂ = −𝑢𝑦𝑉 − ℎ𝐴𝑠(𝑇̂ − 𝑇∞) + 𝐿𝑇𝑠𝑔𝑛(𝑇 − 𝑇̂) (13) 

where 𝑦𝑉 and 𝑇 are the measured voltage and temperature and 𝐿𝑇 is the observer gain 

to be determined. Subtracting (13) from the thermal dynamics in (12), the error 

dynamics can be written as: 
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𝑚𝐶𝑝𝑇̇̃ = 𝑢{𝑈𝑃(𝑥𝑃𝑀, 𝑇) − 𝑈𝑁(𝑥𝑁𝑀, 𝑇)}  

−𝑢𝑇{𝑈𝑃
𝐷(𝑥𝑃𝑀) − 𝑈𝑁

𝐷(𝑥𝑁𝑀)} − ℎ𝐴𝑠(𝑇̃) − 𝐿𝑇𝑠𝑔𝑛(𝑇̃) (14) 

where 𝑇̃ = 𝑇 − 𝑇̂ is the estimation error. We analyze the error dynamics by choosing 

the Lyapunov function candidate 𝑉𝑇 = 0.5𝑚𝐶𝑝𝑇̃2. The derivative becomes: 

𝑉̇𝑇 = 𝑚𝐶𝑝𝑇̃𝑇̇̃ = [𝑢{𝑈𝑃(𝑥𝑃𝑀, 𝑇) − 𝑈𝑁(𝑥𝑁𝑀, 𝑇)}  

− 𝑢𝑇{𝑈𝑃
𝐷(𝑥𝑃𝑀) − 𝑈𝑁

𝐷(𝑥𝑁𝑀)}]𝑇̃ − ℎ𝐴𝑠𝑇̃
2 − 𝐿𝑇𝑇̃𝑠𝑔𝑛(𝑇̃) 

⇒ 𝑉̇𝑇 ≤ |𝑇̃|{|𝑢||𝑈𝑃(𝑥𝑃𝑀, 𝑇) − 𝑈𝑁(𝑥𝑁𝑀, 𝑇)| + |𝑢||𝑇||𝑈𝑃
𝐷(𝑥𝑃𝑀) − 𝑈𝑁

𝐷(𝑥𝑁𝑀)|

− 𝐿𝑇} (15) 

Design of observer gain: Note that from (15), a high value of the observer gain satisfying 

the following condition: 

𝐿𝑇 > 𝐹𝑚𝑎𝑥 ≜ |𝑢|𝑚𝑎𝑥|𝑈𝑃(𝑥𝑃𝑀, 𝑇) − 𝑈𝑁(𝑥𝑁𝑀, 𝑇)|𝑚𝑎𝑥 + |𝑢|𝑚𝑎𝑥|𝑇|𝑚𝑎𝑥|𝑈𝑃
𝐷(𝑥𝑃𝑀) −

𝑈𝑁
𝐷(𝑥𝑁𝑀)|𝑚𝑎𝑥 > 0 ∀𝑡,  

will result in 𝑉̇𝑇 < 0. For design purposes, the following values can be selected:  

|𝑢|𝑚𝑎𝑥: This can be determined a priori based on the operating maximum input current. 

|𝑇|𝑚𝑎𝑥: This can be determined a priori based on the maximum possible temperature 

range for the battery operation.  

|𝑈𝑃(𝑥𝑃𝑀, 𝑇) − 𝑈𝑁(𝑥𝑁𝑀, 𝑇)|𝑚𝑎𝑥, |𝑈𝑃
𝐷(𝑥𝑃𝑀) − 𝑈𝑁

𝐷(𝑥𝑁𝑀)|𝑚𝑎𝑥: These values can be 

determined apriori based on the particular electrode chemistries.  

Considering the observer gain satisfies the above condition, the 𝑉𝑇 dynamics can 

be written as: 

𝑉̇𝑇 ≤ −𝛽√𝑉𝑇 , 𝑤𝑖𝑡ℎ 𝛽 = (𝐿𝑇 − 𝐹𝑚𝑎𝑥) > 0 (16) 
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⇒ 𝑉𝑇 < (−
𝛽

2
𝑡 + √𝑉𝑇(𝑡 = 0))

2

 

Therefore, it can be concluded from (16) that 𝑉𝑇 and the estimation error |𝑇̃| will 

converge to the sliding surface 𝑠𝑇 = 𝑇̃ = 0 in a finite time given by 𝑡𝑓 ≤ 2√𝑉𝑇(𝑡 = 0)/

𝛽. Furthermore, on the sliding surface, we have the following conditions satisfied: 

𝑠𝑇 = 𝑇̃ = 0 and 𝑠̇𝑇 = 𝑇̇̃ = 0 [25]. Considering these conditions, the error dynamics (14) 

can be re-written as: 

0 = 𝑢{𝑈𝑃(𝑥𝑃𝑀, 𝑇) − 𝑈𝑁(𝑥𝑁𝑀, 𝑇)}  

−𝑢𝑇{𝑈𝑃
𝐷(𝑥𝑃𝑀) − 𝑈𝑁

𝐷(𝑥𝑁𝑀)} − 𝑣𝑇  (17) 

where 𝑣𝑇  is the equivalent output error injection signal required to maintain the sliding 

motion. It is a continuous approximation (or filtered version) of the switching signal 

𝐿𝑇𝑠𝑔𝑛(𝑇̃). For real-time implementation, 𝑣𝑇  can be extracted by passing the switching 

signal 𝐿𝑇𝑠𝑔𝑛(𝑇̃) through a low-pass filter [25]. To this end, the pseudo-measurement 

signal can be extracted from (17) as given below: 

𝑦𝑝𝑠𝑒𝑢𝑑𝑜 = 𝑣𝑇 = 𝑢{𝑈𝑃(𝑥𝑃𝑀, 𝑇) − 𝑈𝑁(𝑥𝑁𝑀, 𝑇)}  

−𝑢𝑇{𝑈𝑃
𝐷(𝑥𝑃𝑀) − 𝑈𝑁

𝐷(𝑥𝑁𝑀)} (18) 

 

 

 

Details of Observer II 

The design of Observer II is based on the Unscented Kalman Filter (UKF) 

framework [26]. UKF is developed from the widely used Extended Kalman Filter (EKF) 
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approach for nonlinear systems [27]. The main advantage of UKF lies in the fact that it 

can accommodate nonlinearities of the system along with the modeling and 

measurement uncertainties. UKF follows the same prediction-correction steps as any 

Kalman filtering approach. However, instead of applying the Jacobian of the nonlinear 

functions and thereby linearizing the system for gain calculation as in EKF, UKF applies 

the unscented transform that keeps the model nonlinearities. The system model used 

for the design of Observer II is the two-electrode concentration dynamics (12) with the 

output information of 𝑦𝑝𝑠𝑒𝑢𝑑𝑜 from the Observer I and measured voltage 𝑦𝑉. To apply 

the UKF approach in the present case, the continuous-time system is transformed into a 

discrete-time system using Euler’s discretization with sample time 𝑇𝑠, which results in 

the following discrete time state-space model:  

[
𝑥̅𝑃(𝑘 + 1)

𝑥̅𝑁(𝑘 + 1)
] = [

𝐴̅𝑃(𝑘) 0𝑀

0𝑀 𝐴̅𝑁(𝑘)
] [

𝑥̅𝑃(𝑘)

𝑥̅𝑁(𝑘)
] + [

𝐵̅𝑃(𝑘)

𝐵̅𝑁(𝑘)
] 𝑢(𝑘) 

𝑌(𝑘) = [
𝑦̅𝑉(𝑘)

𝑦̅𝑝𝑠𝑒𝑢𝑑𝑜(𝑘)
] = [

ℎ1(𝑇(𝑘), 𝑥̅𝑃(𝑘), 𝑥̅𝑃(𝑘), 𝑢(𝑘))

ℎ2(𝑇(𝑘), 𝑥̅𝑃(𝑘), 𝑥̅𝑃(𝑘), 𝑢(𝑘))
] 

(19) 

where 𝑥̅𝑃 and 𝑥̅𝑁 are discrete-time states, 𝑦̅𝑉 and 𝑦̅𝑝𝑠𝑒𝑢𝑑𝑜 are the discrete-time outputs, 

𝐴̅𝑃, 𝐴̅𝑁 , 𝐵̅𝑃, 𝐵̅𝑁  are the nonlinear matrices derived from the dynamic equations of (12) 

via Euler’s discretization and  ℎ1, ℎ2 are the time-varying functions derived from the 

output equations 𝑦𝑉 in (12) and  𝑦𝑝𝑠𝑒𝑢𝑑𝑜 in (18). Note that, the nonlinearity is due to the 

dependency of the matrices and functions on the temperature. Especially, the matrices 

𝐴̅𝑃 and 𝐴̅𝑁 are functions of the temperature due to the solid phase diffusion 

coefficient’s Arrhenius dependence on temperature, as shown in (5). However, we 

assume that these matrices are computed online using temperature measurement and 
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treated as known time-varying matrices in the estimator. The system (19) can be written 

in compact from as: 

𝑥(𝑘 + 1) = 𝐴(𝑘)𝑥(𝑘) + 𝐵(𝑘)𝑢(𝑘) + 𝑞(𝑘) 

𝑦(𝑘) = ℎ(𝑘, 𝑥(𝑘), 𝑢(𝑘)) + 𝑟̅(𝑘) (20) 

where 𝑞 represents the process noise accounting for the un-modeled dynamics, 

modeling and parametric uncertainties; 𝑟̅ represents the measurement inaccuracies and 

unmodeled output uncertainties. The corresponding process and measurement noise 

covariance matrices are 𝑄 and 𝑅. The covariance of the state estimation is 𝑃𝑥. The UKF 

implementation follows the steps given in [27]. 

 

APPLICATIONS 
 

Cell Capacity Estimation 

Here we present one important application of the proposed scheme: the 

capacity estimation/tracking for the cell. Following the approach in [11], the total 

number of Li-ions in the cell can be calculated as: 

𝑛𝐿𝑖 =
𝜀𝑠

+𝐿+𝐴

4
3𝜋(𝑅+)3

∫ 4𝜋𝑟2𝑐𝑠
+(𝑟, 𝑡)𝑑𝑟

𝑅+

0

+
𝜀𝑠

−𝐿−𝐴

4
3𝜋(𝑅−)3

∫ 4𝜋𝑟2𝑐𝑠
−(𝑟, 𝑡)𝑑𝑟

𝑅−

0

 

(21) 

Note that, 𝑛𝐿𝑖  essentially represents the capacity of the cell by calculating usable 

Li-ions amount and hence can be served as a capacity indicator of the cell. Using the 

formula in (21) and the electrode concentration estimates from Observer II, the capacity 

indicator can be estimated as: 
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𝑛̂𝐿𝑖 =
𝜀𝑠

+𝐿+𝐴

4
3𝜋(𝑅+)3

4𝜋∆𝑃
3 ∑ 𝑖2𝑐̂𝑠𝑃𝑖

𝑀

𝑖=1
+

𝜀𝑠
−𝐿−𝐴

4
3 𝜋(𝑅−)3

4𝜋∆𝑁
3 ∑ 𝑖2𝑐̂𝑠𝑁𝑖

𝑀

𝑖=1
 

(22) 

Note that aging and other phenomenon of the cell will result in loss of cycle-able 

Li-ions over persistent long-term operations and hence the value of the parameter n̂Li 

will decrease with time. 

Lithium Plating Detection 

In this part, we will illustrate Lithium plating detection as another application of 

the estimated Li-ion concentrations in positive and negative electrode. Lithium plating 

happens during charging the Li-ion cell and essentially results in deposition of metallic 

Lithium on the graphite anode. Several factors such as electrolyte characteristics, ratio 

between negative and positive electrode capacities, charging rates etc affect the 

negative electrode kinetics and Li-ion diffusion rates in such a way that Lithium is 

deposited on the negative electrode instead of intercalating the negative electrode [28], 

[29]. This mechanism may degrade the Li-ion cell performance and safety. 

To detect Lithium plating, we adopt the approach in [30] where the Li-ions 

transport rates in and out of the electrodes were used as indicators of the same. 

However, the approach given in [30] was based on two-electrode models with only 

output voltage, which suffers the previously mentioned unobservability. In this paper, 

we overcome this limitation by using our extended model and cascaded observers.  

As shown in [31], the insertion and extraction rates of the Li-ions follow the 

diffusion dynamics and hence they can be written as: 
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𝐸𝑃 = |
𝜕𝑐𝑃−𝑎𝑣𝑔

𝜕𝑡
| , 𝐼𝑁 = |

𝜕𝑐𝑁−𝑎𝑣𝑔

𝜕𝑡
| 

(23) 

where 𝐸𝑃 and 𝐼𝑁 are the Li-ion extraction rate from positive electrode and insertion rate 

into negative electrode, 𝑐𝑃−𝑎𝑣𝑔 and 𝑐𝑁−𝑎𝑣𝑔 are the volume-averaged Li-ion 

concentrations in the positive and the negative electrodes, respectively, and given as: 

𝑐𝑃−𝑎𝑣𝑔 =
1

4
3𝜋(𝑅+)3

∫ 4𝜋𝑟2𝑐𝑠
+(𝑟, 𝑡)𝑑𝑟

𝑅+

0

 

𝑐𝑁−𝑎𝑣𝑔 =
1

4
3𝜋(𝑅−)3

∫ 4𝜋𝑟2𝑐𝑠
−(𝑟, 𝑡)𝑑𝑟

𝑅−

0

 

(24) 

The plating phenomenon is detected when the extraction rate 𝐸𝑃 exceeds the 

maximum possible extraction rate (𝐸𝑃−𝑚𝑎𝑥) and IN drops below the minimum possible 

insertion rate (𝐼𝑁−𝑚𝑖𝑛). These limits can be obtained in the following way: Collect  𝐸𝑃 

and 𝐼𝑁 data from the healthy battery either by 1) Monte-Carlo simulation studies on the 

battery model on varying different operating conditions, different levels of 

measurement noise, different levels of modeling uncertainties, or, 2) Experimental 

studies on a physical battery under different operating conditions [33]. Then, choose the 

maximum and minimum of 𝐸𝑃 and 𝐼𝑁 as the limits. 
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RESULTS AND DISCUSSIONS 
 

To validate the proposed estimation scheme, we perform simulation studies in 

this section. For simulation purpose, battery cell model parameters of a 6.8 Ah LiCoO2-

Graphite cell are taken from [32]. The plant model used for this purpose is a two-

electrode SPM with averaged thermal dynamics. However, to verify the convergence, 

the Observer II is initialized with incorrect initial conditions. As the temperature is 

measured, we initialize the Observer I with the correct initial condition. In the 

simulation scenarios, we start with verifying the performance with smaller 

measurement noise level. Then gradually we inject higher levels of measurement noise 

and parametric uncertainties to verify the effectiveness of the scheme. 

 

State and Capacity Estimation 

In this section, we present simulation scenarios where the measured variables 

from the plant model are injected with zero mean Gaussian noise 1 mV, 1 mA and 0.1oC. 

Constant Current Discharge: 

The estimation performance under a constant 1C current discharge is shown in 

Fig. 4 through Fig. 7. In Fig. 4, the output estimation performance is shown, which 

validates that the cascade of observer I and II is able to track the temperature and 

voltage with sufficient accuracy. Figures 5 and 6 show the reasonable performance in 

estimation of the surface and bulk SOC for both electrodes. Bulk SOC represents the 

volume-averaged combination of the Li-ion concentration state variables. In Fig. 7, the 
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performance of observer I is shown in estimating the pseudo-measurement. Moreover, 

Fig. 7 also shows the estimation of capacity indicator 𝑛𝐿𝑖, which is accurately estimated 

in a few minutes. 

Dynamic Discharge (UDDS-type profile): 

In the next study, we show the estimation performance under a dynamic 

discharge profile in Fig. 8. The current profile is generated from a scaled-down version 

of the UDDS velocity profile. Moreover, a bias component is added to avoid the zero-

current limitation mentioned earlier. It is evident that the observer-based scheme 

estimates the bulk SOC and the capacity indicator with reasonable accuracy. 

 

Comparison 

In this study, we compare the estimation performance of the scheme using the 

two-electrode formulation proposed in this work against a similar estimation scheme 

that only uses a single-electrode formulation using the assumption of conservation of 

total number of Li-ions in the cell. The second estimation scheme is an UKF designed 

based on only the positive electrode concentration dynamics and voltage output. In the 

simulation plant model, we have injected a side reaction current component which 

leads to capacity fade with time. The result of the estimation performance is shown in 

Fig. 9. It is evident that the estimate from the scheme with conservation assumption 

diverges from the actual value with time while the proposed scheme is able to track 

with reasonable accuracy. 
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Capacity Fade Tracking 

Here we illustrate the observer’s performance in tracking the capacity fade of 

the battery cell under 1C discharge scenario. The capacity fade is simulated by adding a 

side reaction current component into the plant model which is not known to the 

estimators. The performance of the capacity fade tracking is shown in Fig. 10. 

 

Lithium Plating Detection 

In this section, we illustrate the observer’s performance in Lithium plating 

detection. The simulation scenario used for this case study is C/10 charging at ambient 

temperature -20oC. To illustrate the Lithium plating condition in simulation scenario, we 

have injected a step-like additive C/5 charging input current component to the positive 

electrode of the plant-model. This additive input current causes a sudden change in 

current density in the positive electrode while the current density in the negative 

electrode is kept constant. This essentially represents a loss in active Lithium-ions, as 

the Li-ion extraction rate from the positive electrode would be higher than the insertion 

rate in the negative electrode. In this case study, the positive electrode current density 

is increases at t=600 sec. The bulk SOC estimation performance is shown in Fig. 11 

where the observer-based scheme is able to track the bulk SOC even after the 

occurrence of the plating. Further, the plating detection signals 𝐸𝑃 and 𝐼𝑁 are shown in 

Fig. 12. It can be seen that 𝐸𝑃 crosses the maximum limit after the plating has occurred 

and hence the plating is successfully detected.  
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Note: The case study of Lithium plating is used to illustrate the capability of the scheme 

for detecting any mechanism that leads to loss of Lithium in the cell which in turn results 

in capacity loss. Loss of Lithium can be interpreted as: the total amount of Li-ion leaving 

one electrode is not reaching the other electrode; some of them are lost due to 

undesirable reactions. Lithium plating is one of such scenario. Therefore, any such 

mechanism that results in loss of Lithium can be detected by the estimation scheme. So, 

the reversible plating cannot be detected by the proposed scheme as it does not cause 

capacity loss. On the other hand, reversible plating which causes capacity loss will be 

detected by the scheme. Furthermore, the detection accuracy depends on the modeling 

and measurement uncertainties. The loss of Lithium due to plating must be sufficiently 

high such that the Lithium extraction rate goes beyond the pre-defined limit 𝐸𝑃𝑚𝑎𝑥. 

 

Estimation Performance Under the Effect of Uncertainties 

Here, we study the robustness properties of the estimation scheme under 

different uncertainties. These studies are conducted under 1C discharge scenario. 

Effect of measurement noise and bias 

It was mentioned in the design section that this scheme is sensitive to 

measurement noise. In this section, we study the effect of measurement noise via 

simulation by injecting different noise levels in the all three measurements (voltage, 

temperature and current). It is found that the scheme generates reasonable estimates 

approximately up to 25 mV voltage measurement noise and 50 mA current 

measurement noise. Above those ranges, the steady-state estimation error goes 
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significantly higher reducing the effectiveness of the scheme. Other than measurement 

noise, measurement bias is also considered. For voltage and current measurements, it is 

noted that the scheme performs satisfactorily up to 5 mV and 12 mA measurement bias. 

Beyond these values, the performance of the scheme degrades. 

Another interesting point is noted in simulation studies regarding the 

temperature measurement noise. Above 0.5oC noise level in the temperature 

measurement the estimates tend to diverge after a certain point when the signal-to-

noise ratio gets smaller. One such scenario is shown in Fig. 13. This is because of the 

reason that in high temperature measurement noise, the sliding surface deviates 

significantly from 𝑇̃ = 0 and settles to 𝑠𝑇 = 𝑇̃ = 𝜂, where 𝜂 is the lumped effect of 

temperature measurement noise. This creates a significant bias in pseudo-measurement 

which the UKF is unable to handle. Similar effects have been noted under temperature 

measurement bias where the estimation performance degrades beyond 0.1oC bias. 

 

Effect of parametric uncertainties 

In this section, we study the estimation performance under parametric 

uncertainties. The plant model observer is initialized with incorrect parameter values. 

We chose the following parameters for this study: 𝐷𝑠,𝑟𝑒𝑓
− , 𝐷𝑠,𝑟𝑒𝑓

+ , 𝑎𝑠
−, 𝑎𝑠

+, 𝑅𝑓,𝑟𝑒𝑓, ℎ and 

𝐶𝑝. The observer is initialized with 50% error in one of these parameters in each case. It 

is noted that the scheme performs well with reasonable accuracy in case of 

uncertainties in 𝐷𝑠,𝑟𝑒𝑓
− , 𝐷𝑠,𝑟𝑒𝑓

+ , 𝑎𝑠
−, 𝑎𝑠

+. The steady-state errors for these parametric 

uncertainties are shown in Table 1. Note that, the capacities of individual electrodes can 



Journal of Dynamic Systems, Measurement, and Control 

 

25 

Dey, # DS-15-1432 

 

be written as: 𝑄± = 𝜀±𝐴𝐿±𝐹𝑐𝑠,𝑚𝑎𝑥
± |𝑦100% − 𝑦0%| where 𝑦0% and 𝑦100% are the 

stoichiometry points of the individual electrode [37]. Further, the definition 𝑎𝑠
± =

3𝜀±/𝑅± (see after (1)) indicates that 50% uncertainty injection in 𝑎𝑠
± is essentially 

equivalent to 50% uncertainty injection in 𝜀± which in turn injects uncertainty in the 

individual electrode capacities 𝑄±. Therefore, it can be concluded that the scheme 

performs reasonably under the deviation of individual electrode capacities due aging. 

However, the scheme is found to be sensitive to the parametric variations in 

𝑅𝑓,𝑟𝑒𝑓, ℎ and 𝐶𝑝. Estimation error for the bulk SOC is shown in Fig. 14. It can be seen 

that the negative electrode bulk SOC estimation is degraded in case of any of these 

parameter variations. However, for positive electrode case, it is still reasonable in case 

of uncertainties in 𝑅𝑓,𝑟𝑒𝑓 and ℎ but degrades significantly in case of 𝐶𝑝 uncertainty. The 

reason behind this is that in the voltage measurement expression, the contribution of 

the positive electrode concentration is significantly higher than that of the negative 

electrode concentration. Therefore, any smaller uncertainties in the voltage expression 

such as deviation in 𝑅𝑓,𝑟𝑒𝑓 make the negative electrode estimation poor. However, the 

uncertainty in 𝐶𝑝 affects the pseudo-measurement estimation significantly and 

therefore affects estimation of the concentration in both electrodes. 

 

Estimation Performance Under Zero Input Current 

In the final simulation, we show the performance of the scheme under zero 

current. As discussed and showed in the observability analysis, the model loses 

observability under zero input current due to the absence of the heat generation term. 
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It is confirmed in the result shown in Fig. 15 where the input current is made to zero at 

1000 sec and the estimation errors diverge to a different non-zero value. So, it is 

important to engage the proposed estimation scheme under some non-zero current. 

 

Note: The limitations of this approach are: 1) addition of the temperature measurement 

for each cell increases the hardware cost to some extent, 2) a one-state thermal 

dynamic model needs to be solved in Observer I. However, the gain from the additions 

of the model and measurement is the availability of the estimates of each electrode 

states, which can be used for battery health monitoring (e.g. capacity tracking, plating 

detection) as detailed in the previous sections. 

 
CONCLUSION 

 

In this paper, we present an estimation scheme to estimate Li-ion concentrations 

in the negative and positive electrodes of the Li-ion cell. To capture the battery internal 

physics, we adopt the two-electrode electrochemical SPM along with averaged thermal 

dynamics for the observer design. First, the improvement of the observability of the Li-

ion concentration states in both electrodes is given measurement of temperature and 

voltage. Next, the details of the cascaded observer structure are outlined. The first 

observer estimates a function containing Li-ion surface concentration information from 

the thermal dynamics and the measured temperature. The second observer uses this 

information along with the measured voltage to estimate the Li-ion concentration states 

of both electrodes. Two important applications of the proposed estimation scheme are 
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presented: cell capacity estimation and Lithium plating detection. The effectiveness of 

the scheme is verified by simulation studies. Furthermore, the effect of measurement 

noise and parametric uncertainties are evaluated. 

However, there are some aspects that should be explored as future work of this 

study. First, the scheme is illustrated using particular battery chemistry (LiCoO2-

Graphite). The effectiveness of the scheme should be explored for other chemistries. 

Next, solutions should be investigated to deal with the sensitivity to high noise levels in 

the measurements. Finally, the proposed scheme should be validated using 

experimental data to verify its effectiveness. 
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NOMENCLATURE 
 
 

𝐴 Current collector area (cm2) 

𝐴𝑠 Surface area of the cell (cm2) 

𝑎𝑠
± Electrode surface area, specific (cm2/ cm3) 

𝑐𝑒 Li-ion concentration, electrolyte phase (mol/cm3) 

𝑐𝑠
± Li-ion concentration, solid phase (mol/cm3) 

𝑐𝑠,𝑒
±  Li-ion surface-concentration, solid-phase (mol/cm3) 

𝑐𝑠,𝑚𝑎𝑥
±  Li-ion max. concentration, solid-phase (mol/cm3) 

𝐷𝑠
± Solid-phase diffusion coefficient (cm2/s) 

𝐷𝑠,𝑟𝑒𝑓
±  Solid-phase diffusion coefficient at  T𝑟𝑒𝑓 (cm2/s) 

𝐸𝐾
± Diffusion coefficient activation energy (J/mol) 

𝐸𝐷𝑠
±  Reaction rate constant activation Energy (J/mol) 

𝐸𝑅 Film resistance activation energy (J/mol) 

ℎ Cell heat transfer coefficient (W/cm2-K) 

𝐹 Faraday’s constant (C/mol) 

𝐼 Current (A) 

𝐾± Reaction rate constant (cm2.5/mol0.5/s) 

𝐾𝑟𝑒𝑓
±  Reaction rate constant at T𝑟𝑒𝑓 (cm2.5/mol0.5/s) 

𝐿± Cell length (cm) 

𝑟 Radial coordinate (cm) 

𝑅 Solid active particle Radius (cm) 

𝑅̅ Universal Gas Constant (J/mol-K) 

𝑅𝑓,𝑟𝑒𝑓 Contact film resistance at T𝑟𝑒𝑓 (Ω) 
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𝑇 Temperature (K) 

𝑇𝑟𝑒𝑓 Reference temperature (K) 

𝑇∞ Ambient emperature (K) 

𝑈± Open circuit voltage (V) 

𝛼± Charge transfer coefficient  

𝜌 Cell density (g/cm3) 

𝑣 Cell volume (cm3) 

𝐶𝑝 Specific heat capacity (J/g-K) 

Superscript 

± positive/negative electrode 
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Table Caption List 
 

Table 1 Bulk SOC estimation error under parametric uncertainties 
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Figure Captions List 
 

Fig. 1 Schematic of the single particle model (SPM) 

Fig. 2 The functions 𝐔𝐏, 𝐔𝐍, 𝐔𝐏
𝐃 and 𝐔𝐍

𝐃 for LiCoO2-Graphite chemistry [21] 

Fig. 3 Estimation Scheme 

Fig. 4 Temperature and voltage tracking 

Fig. 5 Surface concentration tracking by Observer II 

Fig. 6 Negative and positive electrode bulk SOC estimation performance 

Fig. 7 Pseudo-measurement and capacity estimation performance 

Fig. 8 Estimation performance of the observer-based scheme under dynamic 

discharge profile 

Fig. 9 Comparison of the estimation performance "with the conservation 

assumption" and the proposed scheme 

Fig. 10 Capacity fade tracking performance 

Fig. 11 Bulk SOC estimation performance under Lithium plating (with C/10 charging 

and ambient temperature -20oC). The plating is injected at t=600 sec 

Fig. 12 Lithium plating detection performance with C/10 charging and ambient 

temperature -20oC. The plating is injected at t=600 sec and the Li-ion 

extraction rate from positive electrode (𝑬𝑷) goes beyond the maximum limit 

Fig. 13 Bulk SOC estimation error under different level of temperature measurement 

noise 

Fig. 14 Bulk SOC estimation error under parametric uncertainties (𝑹𝒇,𝒓𝒆𝒇, 𝒉 and 𝑪𝒑) 

Fig. 15 Estimation error under zero current. The current is made to zero at 1000 sec. 
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Table 1: Bulk SOC estimation error under parametric uncertainties 

Parametric Uncertainties Bulk SOC Estimation Error 

Negative Electrode Positive Electrode 

50% deviation in Ds,ref
−  4% 2% 

50% deviation in Ds,ref
+  3% 6% 

50% deviation in as
− 5% 2% 

50% deviation in as
+ 3% 7% 
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Figure 1. Schematic of the single particle model (SPM) 
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Figure 2: The functions UP, UN, UP
D and UN

D for LiCoO2-Graphite chemistry [21] 
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Figure 3: Estimation Scheme 
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Figure 4: Temperature and voltage tracking 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 



Journal of Dynamic Systems, Measurement, and Control 

 

42 

Dey, # DS-15-1432 

 

Figure 5: Surface concentration tracking by Observer II 
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Figure 6: Negative and positive electrode bulk SOC estimation performance 
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Figure 7: Pseudo-measurement and capacity estimation performance 
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Figure 8: Estimation performance of the observer-based scheme under dynamic 
discharge profile 
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Figure 9: Comparison of the estimation performance "with the conservation 
assumption" and the proposed scheme 
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Figure 10: Capacity fade tracking performance 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Journal of Dynamic Systems, Measurement, and Control 

 

48 

Dey, # DS-15-1432 

 

Figure 11: Bulk SOC estimation performance under Lithium plating (with C/10 charging 
and ambient temperature -20oC). The plating is injected at t=600 sec 
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Figure 12: Lithium plating detection performance with C/10 charging and ambient 
temperature -20oC. The plating is injected at t=600 sec and the Li-ion extraction rate 
from positive electrode (EP) goes beyond the maximum limit 
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Figure 13: Bulk SOC estimation error under different level of temperature measurement 
noise 
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Figure 14: Bulk SOC estimation error under parametric uncertainties (Rf,ref, h and Cp) 
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Figure 15: Estimation error under zero current. The current is made to zero at 1000 sec. 

 

 

 

 


